
The Role of Clouds in the Tropospheric NOx Cycle: A New
Modeling Approach for Cloud Chemistry and Its
Global Implications
Christopher D. Holmes1 , Timothy H. Bertram2 , Kaitlyn L. Confer1, Kelly A. Graham1,
Allison C. Ronan1, Charles K. Wirks1, and Viral Shah3

1Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA, 2Department of
Chemistry, University of Wisconsin, Madison, WI, USA, 3Harvard John A. Paulson School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA, USA

Abstract We present a new method for simulating heterogeneous (surface and multiphase) cloud
chemistry in atmospheric models that do not spatially resolve clouds. The method accounts for cloud
entrainment within the chemical rate expression, making it more accurate and stable than other approaches.
Using this “entrainment‐limited uptake,” we evaluate the role of clouds in the tropospheric NOx cycle. Past
literature suggests that on large scales, losses of N2O5 and NO3 in clouds are much less important than losses
on aerosols. We find, however, that cloud reactions provide 25% of tropospheric NOx loss in high latitudes
and 5% of global loss. Homogeneous, gas phase hydrolysis of N2O5 is likely 2% or less of global NOx loss. Both
clouds and aerosols have similar impacts on global tropospheric O3 and OH levels, around 2% each.
Accounting for cloud uptake reduces the sensitivity of atmospheric chemistry to aerosol surface area and
uptake coefficient since clouds and aerosols compete for the same NO3 and N2O5.

Plain Language Summary Cloud water droplets and ice crystals enable some aqueous and
surface chemical reactions that otherwise would not occur in the gaseous atmosphere. While clouds are
widespread and familiar, methods for simulating their multiphase chemical effects in global atmospheric
models have been inadequate. We present an efficient mathematical method to represent the combined
effects of cloud chemistry and entrainment in large‐scale atmospheric chemistry models that do not resolve
individual clouds. By applying the approach to nitrogen oxides, we show that clouds have a previously
unrecognized impact on tropospheric ozone, an air pollutant and greenhouse gas, and hydroxyl, a key
atmospheric oxidant.

1. Introduction

Nitrogen oxides (NOx=NO+NO2) play a critical role in tropospheric chemistry, by catalyzing the chemical
production of key oxidants—O3 and OH—during hydrocarbon oxidation. NOx is emitted into the atmo-
sphere by combustion, lightning, and soil microbes and removed mainly as nitric acid (HNO3), which is effi-
ciently scavenged in dry and wet deposition (Logan, 1983). Most HNO3 forms through the reaction of NO2

with OH; however, hydrolysis of N2O5 on aerosol and cloud surfaces is an important secondary pathway
(Alexander et al., 2009; Dentener & Crutzen, 1993). While past literature suggests that tropospheric N2O5

loss on clouds are small on regional and global scales compared to loss on aerosol (Dentener & Crutzen,
1993; Jacob, 2000), this work revisits the role of clouds in light of our improved understanding of reactive
chemistry on tropospheric aerosol.

N2O5, which is produced through reactions between NO2 andNO3, is a nighttime reservoir of NOx (Atkinson
et al., 1986; Brown et al., 2003; Chang et al., 2011; Platt & Janssen, 1995). N2O5 decomposes at warm tem-
peratures and under sunlight, but its main loss in the lower troposphere is hydrolysis in aerosol and cloud
water (Brown et al., 2007; Heikes & Thompson, 1983). The hydrolysis product is HNO3, which typically
remains particle bound, although gaseous ClNO2 is possible in particles with high salt content (Behnke
et al., 1997; Bertram & Thornton, 2009; Finlayson‐Pitts et al., 1989; Thornton & Abbatt, 2005; Thornton
et al., 2010). Heterogeneous reaction rates, including surface and multiphase reactions, are controlled by
mass transfer from the gas phase to liquid surfaces and details of surface or aqueous chemistry can be encap-
sulated in a reactive uptake coefficient, γ, that represents the reaction probability for a molecule impacting
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the cloud or aerosol surface (Jacob, 2000; Ravishankara, 1997; Sander, 1999; Schwartz, 1986). For cloud
water, γN2O5

¼ 0:03 at 298 K and rises with colder temperatures (Bertram & Thornton, 2009; Burkholder

et al., 2015; van Doren et al., 1990). For aerosols, the N2O5 uptake coefficient strongly depends on composi-
tion (Bertram & Thornton, 2009; Brown et al., 2006; McDuffie et al., 2018), but, with the exception of strato-
spheric sulfuric acid aerosol, the uptake coefficient is generally less than pure water (Ammann et al., 2013;
Burkholder et al., 2015; Crowley, Ammann, et al., 2010). While clouds have greater γN2O5

and far greater sur-

face area than tropospheric aerosol (around 1,000 times greater surface area; inferred from aerosol, Heald
et al., 2014, and cloud, Pruppacher & Jaenicke, 1995, data), their influence on global N2O5 and tropospheric
chemistry is limited by the small volume occupied by clouds and the intervals of hours to days between cloud
contacts (Lelieveld & Crutzen, 1990, 1991).

In atmospheric models, N2O5 hydrolysis on aerosols lowers the global tropospheric NOx burden around 15%
and lowers O3 and OH around 5% each, relative to models without this process (for γN2O5

≈0:01−0:03; Evans
& Jacob, 2005; Macintyre & Evans, 2010). This aerosol uptake accounts for 8–40% of global HNO3 production
(Alexander et al., 2009; Bauer, 2004; Evans & Jacob, 2005; Hauglustaine et al., 2014; Xu & Penner, 2012).
Earlier studies suggested larger impacts but overestimated the uptake coefficient for tropospheric aerosol (
γN2O5

¼ 0:1 was assumed, based on laboratory data available at the time; Dentener & Crutzen, 1993; Liao

et al., 2003; Tie et al., 2001). One of the earliest studies concluded that N2O5 hydrolysis in cloud water has
little impact on tropospheric chemistry, except in the remote southern hemisphere, because in their model,
ubiquitous aerosol already consumedmost N2O5 (Dentener & Crutzen, 1993). As a result, some atmospheric
chemistry models neglect N2O5 hydrolysis in clouds (Evans & Jacob, 2005; Folberth et al., 2006;
Hauglustaine et al., 2014; Tie et al., 2001; Xu & Penner, 2012). However, since their γN2O5

value was too high

in light of more recent laboratory and field studies, Dentener and Crutzen (1993) overestimated the role of
aerosols relative to clouds in N2O5 hydrolysis and it appears that the importance of clouds in the global NOx

budget has not been revisited since.

In this work, we add N2O5 hydrolysis on clouds to a global atmospheric chemistry model and quantify its
impact on tropospheric oxidants. Our treatment of cloud uptake of N2O5 uses a newmathematical modeling
approach, developed in section 2, for treating mass exchange between gas and cloud droplets in a partially
cloudy model grid cell. We show that this new approach dramatically reduces errors in the chemical solver
relative to existing methods used in global atmospheric chemistry models. Sections 3 and 4 describe the
improved model and examine the broader implications for tropospheric chemistry.

2. Reactive Chemical Uptake in Partly Cloudy Conditions

The rate at which aqueous reactions consume gas, such as N2O5, within a cloud, fog, or other aerosol, is
(Fuchs & Sutugin, 1971; Jacob, 2000; Sander, 1999; Schwartz, 1986)

Ji ¼ kici; ki ¼ A
r
Dg

þ 4
vγ

� �−1

: (1)

Here ci is the gas concentration in interstitial air, A is the surface area density of cloud or aerosol, r is the
droplet or aerosol radius, Dg is the diffusivity in air, v is the mean molecular speed, and γ is the reactive
uptake coefficient. The surface area density of spherical cloud droplets is related to the liquid water content,
L, by A = 3L/ρr, where ρ is the density of water. For typical cloud conditions (L ¼ 0:3 g=m3; r ¼ 10 μm;Dg

¼ 2×10−5 m2=s; v ¼ 300 m=s; γN2O5
¼ 0:03 ), the characteristic timescale for heterogeneous loss of N2O5

inside a cloud is k−1i ≈10 s. This timescale is much shorter than the residence time of air in clouds, which
is 15–120 min for many stratus and cumulus clouds (Feingold et al., 1998, 2013; Kogan, 2004; Lelieveld et al.,
1989; Stevens et al., 1996) although it can be longer for cirrus (Podglajen et al., 2016). As a result, N2O5 and
other gases with fast, irreversible, aqueous loss are depleted in clouds relative to surrounding clear air
(Brown et al., 2016; Platt et al., 1981). The loss rate of N2O5 and similar gases therefore strongly depends
on the rate at which these gases are entrained into the cloud from the surrounding air.

Global atmospheric chemistry models, and some regional models, do not resolve individual clouds or
entrainment, so these processes must be parameterized to simulate cloud heterogeneous chemistry.
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Several approximations have been previously used in such models, but all
have significant shortcomings. Early models appreciated the intermittent
nature of clouds and alternated cloudy and cloud‐free conditions in each
grid cell in proportion to the time that air resides within cloud (Lelieveld
& Crutzen, 1990, 1991; Liang & Jacob, 1997). However, this approach is
complex to implement, computationally slow, and we are not aware of
current 3‐D models that use it. Instead, many chemical transport models
apply equation (1) using a grid‐average surface area density, fcA, where
A is the surface area density within cloud and fc is the cloud fraction of
the grid cell (Huijnen et al., 2014; Jacob et al., 2004; Parrella et al., 2012;
Williams et al., 2009). In this “thin‐cloud approximation,” the resulting
characteristic loss time is (fcki)

−1, which is 20–60 s for N2O5 and cloud
fractions in the range 0.1 < fc < 0.5. This loss rate is much too fast
(Figure 1; Müller, 2014) because it is equivalent to spreading cloud water
throughout the grid cell or assuming that cloudy and cloud‐free air are
continuously well mixed, making all gas in the grid cell susceptible to
cloud uptake. Another approach is to partition the grid cell into portions
that are within cloud and subject to uptake and another portion that is
not (Tost et al., 2006). If this “cloud partitioning method” is applied at
the start of each model time step, it implicitly assumes that mixing
between cloudy and clear air portions of the grid cell happens with the

same timescale as the model time step. If the time step is changed, as commonly happens when changing
model resolution, then the entrainment and gas‐aqueous exchange rates are altered, which is unphysical
(Figure 1). Furthermore, for fast reactions, the numerical error actually rises as the time step is reduced,
which violates expectations for numerical convergence.

We derive a more realistic treatment of reactive chemical uptake in partly cloudy conditions for use in global
and regional atmospheric models. In this approach, which we call “entrainment‐limited uptake,” the gas
concentration in the cloudy part of the grid cell, ci, is depleted by heterogeneous surface or multiphase reac-
tions at rate kici, where ki is given by equation (1), and by detrainment to clear air at rate kcci, where τc= 1/kc
is the residence time of air in cloud. The in‐cloud concentration is also replenished by entrainment from
clear air. As shown in the supporting information, the mass balance equations imply that gas is consumed
from a partly cloudy grid cell at the rate

J ¼ kc; k ¼ ki
x

1þ x

� �
; (2)

where c is the usual grid cell concentration, which averages over cloudy and cloud‐free regions. The term x/
(1+x) is the fraction of gas in the grid cell that is within cloud, and x is related to cloud properties and che-
mical rates by

x ¼ 1
2

f 0−k0−1ð Þ þ 1
2

1þ k
0 2 þ f

0 2 þ 2k0 þ 2f 0−2k0f 0
� �1=2

; k0≡
ki
kc

; f 0≡
f c

1−f c
: (3)

The supporting information provides a detailed derivation of these equations. The loss rate thus depends on
the ratio of reactive uptake versus detrainment rates (ki/kc) as well as the cloud fraction (fc). If meteorological
and chemical data can provide fc, kc, and ki, then numerical models can easily calculate k, but the controls on
heterogeneous reaction rates are more apparent from the approximate solution

k ≈ ek ¼ 1
f ′kc

þ 1
f cki

� �−1

¼ 1−f c
f ckc

þ r
f cADg

þ 4
f cAvγ

� �−1

: (4)

Within a cloud or aerosol, equation (1) shows that uptake is limited by gas phase diffusion (Dg term) and
reactive uptake (γ term) acting in series. On scales larger than a single cloud, equation (4) shows that
entrainment (kc term) also limits uptake in series with the two in‐cloud processes, so k ≤ ki. Under

Figure 1. Uptake of a reactive gas (γ = 0.03) in a partly cloudy environment
as simulated with several methods (section 2). The approximate entrain-
ment‐limited uptake (equation (4)) matches the exact solution (equations (2)
and (3)) within the accuracy of the red and black lines, while the com-
monly used thin cloud and cloud repartitioningmethods predict much faster
loss. Time steps for the cloud partitioning method are in parentheses. All
methods use the same cloud and chemical conditions:
fc = 0.2, τc = 1 hr, L = 0.3 g/m3, r = 10 μm, Dg = 0.2 cm2/s, v = 250 m/s,
γ = 0.03.
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completely cloudy conditions, the entrainment term vanishes and equation (4) reduces to equation (1) (i.e.,
k = ki when fc = 1), meaning that our entrainment‐limited uptake is a generalization of the Schwartz (1986)
equation for partly cloudy conditions.

Scale analysis of equation (4) highlights the importance of entrainment for limiting the loss of N2O5, and

other soluble compounds, in clouds. While the timescale for N2O5 loss inside a cloud is k−1i ≈10 s, as we
showed above, the characteristic time for loss in a partly cloudy region (fc = 0.1 − 0.5,τc = 3,600 s) is
k−1 = 1–10 hr. For N2O5, the characteristic time is effectively determined by entrainment alone since
(f′kc)

−1 is 2–3 orders of magnitude larger than (fcki)
−1. However, the in‐cloud chemistry influences the

loss rate for high cloud fractions (fc ≳ 0.95), low uptake coefficients (γ ≲ 10−3), or very low surface area
density (A≲ 0.001 cm2/cm3). In the limit of ki/kc ≪ 1, meaning that in‐cloud reactions are much slower
than entrainment mixing, then k ≈ fcki, which is the thin‐cloud approximation. Thus, the thin‐cloud

approximation is reasonable for reactions with an in‐cloud characteristic time, k−1i , longer than about
10 hr (corresponding to γ ≲ 10−6).

Figure 1 illustrates the loss of N2O5 simulated with entrainment‐limited uptake in comparison to the thin‐
cloud and cloud partitioning methods, all using the same assumptions about cloud properties. In the thin‐
cloud approximation, all N2O5 is lost within minutes. The cloud partitioning method simulates slower
N2O5 loss, but loss rate is inversely proportional to the time step of the model, growing faster as the step size
decreases. Only the entrainment‐limited approach simulates slow, steady loss over hours, and the results are
practically indistinguishable between the exact (equations (2) and (3)) and approximate (equation (4))
expressions. Because the entrainment‐limited uptake is encapsulated in a first‐order loss coefficient, it has
very minimal computational cost while producing much greater realism compared to the other approaches.

3. Model Description

We assess the impact of clouds on N2O5 hydrolysis and tropospheric chemistry using the GEOS‐Chem global
chemical transport model (version 11‐01, www.geos‐chem.org). Simulations here use the tropospheric
chemistry mechanism (Parrella et al., 2012). MERRA‐2 (Modern‐Era Retrospective Reanalysis for
Research and Applications, Version 2) reanalysis meteorology (Gelaro et al., 2017) drives transport and pro-
vides cloud properties, which we resolve at 4° × 5° and 47 vertical layers. Prior work has found that the sen-
sitivity of global chemical responses to perturbations are generally consistent across model resolutions
(Holmes et al., 2013). Emissions follow the model defaults. For NOx, this includes the EDGAR global fossil
fuel inventory (version 4.2; EC‐JRC, 2011) and Yevich and Logan (2003) biofuel inventory, which are
replaced by regional inventories where they are available (NEI2011v1 in United States: United States
Environmental Protection Agency, 2015; Travis et al., 2016; BRAVO in Mexico: Kuhns et al., 2005; CAC
in Canada: van Donkelaar et al., 2008; EMEP in Europe: European Monitoring and Evaluation
Programme, 2014; and MIX in East Asia: Li et al., 2014). GFED4.1s provides biomass burning emissions
(van der Werf et al., 2017). Soil and lightning NOx emissions respond to the model's meteorology
(Hudman et al., 2012; Murray et al., 2012) and include a bug fix for lightning (Lee Murray, personal commu-
nication, 9 August 2018).

The model previously included heterogeneous NOx chemistry on aerosol surfaces (Evans & Jacob, 2005). We
update the reactive uptake coefficients for consistency with recent literature (Table S1; Ammann et al., 2013;
Atkinson et al., 2016; Bertram & Thornton, 2009; Bröske et al., 2003; Burkholder et al., 2015; Crowley,
Ammann, et al., 2010; Escorcia et al., 2010; Fenter & Rossi, 1997; Ryder et al., 2015; Tan et al., 2016). In par-

ticular, NO3 uptake on organic aerosol is slower (Atkinson et al., 2016) and N2O5 reactions on SO2−
4 : NO−

3

: NHþ
4 aerosol now depend on the H2O andNO−

3 concentrations in aerosol (Bertram & Thornton, 2009; Shah
et al., 2018). Past model versions assumed that the product of N2O5 uptake on all surfaces is entirely HNO3.
This is reasonable for clouds, but laboratory and field studies have demonstrated that aerosol uptake can
produce ClNO2, which escapes to the gas phase and recycles NOx. The yield of ClNO2 rises with the chloride
content of the aerosol and reaches 1 for the concentrations found in sea salt aerosol (Behnke et al., 1997;
Bertram& Thornton, 2009), so we adopt this yield for sea salt. For other aerosols in our simulations, the pro-
duct remains HNO3 because GEOS‐Chem does not track the chloride content of nonsea salt aerosol. The
simulated aerosol burden and optical depth, which are indicators of aerosol surface area, are consistent
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with other recent global models (Myhre et al., 2013). As recommended by Atkinson et al. (2015), the
model does not include homogeneous, gas phase hydrolysis of N2O5: N2O5(g)+H2O(g) → 2HNO3(g).
Other models are sensitive to this reaction (Emmerson & Evans, 2009; Williams et al., 2009), however,
so we assess its impact in a sensitivity simulation using an upper limit for the rate constant
(<1 × 10−22 cm3 molecule–1 s–1; Atkinson et al., 2015).

We add uptake of N2O5, NO3, and NO2 on cloud water and cloud ice to the model using the entrainment‐
limited approach derived in section 2 (equations (2) and (3)) and recent assessments of reactive uptake coef-
ficients (Table S1; Ammann et al., 2013; Burkholder et al., 2015; Crowley, Ammann, et al., 2010). The surface
area of liquid water clouds, which is needed for equation (1), is derived from the MERRA‐2 liquid water con-
tent using A = 3L/ρr, where r is the effective radius and ρ = 1,000 kg/m3 is the density of liquid water.
We assume r = 10 μm for marine clouds and r = 6 μm for continental clouds. For ice clouds, we use the
empirical, temperature‐dependent effective radius, r(T), reported by Heymsfield et al. (2014, their equa-
tion 9e). Bearing in mind that ice surface area is about 9 times larger than the cross‐sectional area
(Schmitt & Heymsfield, 2005), or 2.25 times the surface area of a sphere with the same effective radius,
the ice surface area density is A = 6.75I/ρicer(T), where I is the MERRA‐2 ice water content and
ρice = 910 kg/m3 is the density of ice. When compared to satellite observations, MERRA‐2 cloud proper-
ties reproduce the zonal mean and frequency distributions of optical depth and radiative effects within
30% (Bosilovich et al., 2015; Hongyu Liu, personal communication, 16 October 2018). Uncertainties in
the cloud surface area and uptake coefficient have little effect on the results here because N2O5 and
NO3 uptake are primarily limited by entrainment and NO2 uptake is very small. The residence time of
air in clouds, which is used in the entrainment‐limited uptake equations, varies by cloud type and
weather conditions. MERRA‐2, however, like many other meteorological reanalyses, provides only total
cloud fraction, with no information about cloud types. In this work, we use τc= 1 hr for the cloud resi-
dence time based on mean values for stratus and stratocumulus clouds (Feingold et al., 1998, 2013;
Kogan, 2004; Stevens et al., 1996), which comprise a large fraction of global cloud cover (Lelieveld
et al., 1989; Pruppacher & Jaenicke, 1995). Future work is needed to prescribe spatial and temporal
variation in the cloud residence time from global reanalysis data.

The effects of heterogeneous reactions on NOx, O3, and OH chemistry are assessed in four simulations. The
control simulation includes uptake on aerosols and clouds, as described above, and is our best representation
of this heterogeneous chemistry. Three sensitivity tests neglect uptake on clouds, aerosols, or both. An addi-
tional sensitivity test includes homogeneous hydrolysis of N2O5. All simulations begin with 6 months of
spin‐up, and then results for 2015 are analyzed.

4. Impact of Cloud Heterogeneous Chemistry

Figure 2 shows the contributions of reaction pathways to NOx loss by latitude in the model. Uptake of N2O5,
NO3, and NO2 in clouds, the innovation in this work, is far from negligible, as suggested in past literature.
Clouds provide 25% of NOx loss at high latitudes and 1%–5% at low latitudes. In the Northern
Hemisphere, most of this loss occurs in liquid water clouds because NOx concentrations are highest at
low altitudes due to surface emissions. In the Southern Hemisphere, NOx is more evenly distributed verti-
cally, so ice clouds provide most of the uptake. Aerosol uptake provides up to 30% of simulated NOx loss
in midlatitudes of the Northern Hemisphere, and homogeneous gas phase reactions provide the majority
of NOx loss at all latitudes. When integrated over just the lowest 2 km, aerosol uptake in our model rises
to 50% of NOx loss in northern midlatitudes, which is similar to results from field studies focused on this
region (Aldener et al., 2006; Jaegle et al., 2018; Wagner et al., 2013).

Seasonally, heterogeneous NOx loss on aerosols and liquid water clouds is greatest in winter, particularly in
the northern extratropics (Figure 2b). This occurs for both aerosols and liquid water clouds. For loss on aero-
sols, the main driver of this seasonal cycle is the rise in N2O5 concentrations in winter due to its thermal sta-
bility at cold temperatures (Dentener & Crutzen, 1993; Platt et al., 1981). In our simulations, the mean N2O5

loss frequency on aerosols, which does not depend on N2O5 concentration, is nearly constant throughout the
year in the northern extratropics (Figure 2c). Loss of N2O5 on liquid water clouds has a stronger seasonal
cycle than loss on aerosols, meaning that the loss frequency is greater in winter than summer. This
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happens because cloud coverage increases in winter, particularly in the Northern Hemisphere (Stubenrauch
et al., 2006). The uptake coefficient (γN2O5

) on liquid water also increases at cold temperatures (Burkholder

et al., 2015), but this effect has little influence on the seasonal cycle because gas phase diffusion and cloud
entrainment impose greater limits on uptake rate. The seasonal cycle of N2O5 uptake on ice clouds in the
northern extratropics differs from uptake on liquid water clouds. In our simulations, ice clouds take up
N2O5 more effectively in summer than winter (Figure 2c), despite the lesser extent of ice clouds in
summer. The reason is that summertime convection transports NOx to high altitudes where ice clouds
persist. This effect offsets the seasonal cycle of N2O5 concentrations so that the overall loss of N2O5 on ice
clouds is nearly constant year‐round (Figure 2b).

Table 1 quantifies the global NOx budget and the impact of neglecting heterogeneous reactions on tropo-
spheric chemistry. Uptake on clouds is 5% of the global chemical NOx sink (0.2 Tmol N/year) and aerosols

remove another 27% (1.1 Tmol N/year). Most heterogeneous loss on both
clouds and aerosols is from N2O5 uptake and, secondarily, from NO3

uptake. NO2 uptake is small on aerosols and negligible on clouds because
of the very small reactive uptake coefficients (Table S1). Homogeneous
reactions, primarily NO2 + OH → HNO3 and
NO3 + VOC→HNO3 + products, provide the remaining 68% of chemical
loss. In addition to the chemical sinks, dry deposition of NO2 and organic
nitrates provides an additional sink for 0.3 Tmol N/year, which is similar
to the cloud heterogeneous losses.

If the cloud heterogeneous reactions are neglected, the tropospheric NOx

burden in the model increases 0.7%, which results in a 2% increase in tro-
pospheric O3 and a 2% decrease in the CH4 lifetime due to tropospheric
OH. Neglecting heterogeneous aerosol reactions yields changes of a simi-
lar magnitude: 4% increase in NOx, 3% increase in O3, and 3% decrease in
CH4 lifetime. Thus, the impacts of aerosol and cloud heterogeneous chem-
istry on O3 and CH4 lifetime is similar, despite the fivefold greater NOx

loss on aerosols. The differences arise from the locations where NOx is
lost. Studies of aviation, ship, and industrial emissions show that marginal
changes in NOx abundance have the greatest effect on tropospheric O3 in
low‐NOx environments (Lin et al., 1988), particularly at low latitudes and
high altitudes (Fry et al., 2012; Fuglestvedt et al., 2008; Holmes et al., 2014;
Köhler et al., 2008, 2013). While aerosols remove NOx mainly from the
lower troposphere over industrial regions with high NOx, clouds have a
greater impact in remote, high‐altitude, low‐NOx environments, which
gives clouds a disproportionate impact on global O3 and OH.

Figure 2. Chemical pathways for NOx conversion to HNO3 (a) in the zonal and annual mean, with black line showing HNO3 production (right vertical axis), (b) by
month in the northern hemisphere extratropics (30°N–90°N), and (c) N2O5 loss frequency in the northern extratropics.

Table 1
Effect of Heterogeneous NOx Chemistry on Tropospheric Composition and
NOx Loss

Simulation Control Cloud offa Aerosol offa Both offa

Aerosol reactions Yes Yes No No
Cloud reactions Yes No Yes No

NOx 42.9 Gmol N +0.7% +3.8% +8.9%
O3 6.9 Tmol +2.4% +2.5% +7.0%
OH 16.3 Mmol +2.7% +2.0% +6.0%
τCH4þOH 8.7 year –1.9% –3.4% –6.9%
NOx sinks, Tmol N/year
Total P(HNO3) 4.11 –0.8% –2.4% –5.7%
Homogeneousb 2.89 +3.2% +21.4% +33.0%
NO2 + aerosol 0.04 –0.6% — —

NO3 + aerosol 0.13 +2.9% — —

N2O5 + aerosol 0.80 +10.8% — —

NO2 + cloud 0.00 — +24.1% —

NO3 + cloud 0.02 — +73.9% —

N2O5 + cloud 0.19 — +131% —

Depositionc 0.29 +0.7% +27.1% +49.1%

aPercent changes are (Experimental − Control)/(Control) × 100%.
bNO2 + OH → HNO3 and NO3 + VOC → HNO3 + products.
Homogeneous hydrolysis of N2O5 could provide an additional 0.1 Tmol
N/year. cDry and wet deposition of NO2, N2O5, and organic nitrates.
Of these, dry deposition of NO2 and organic nitrates are each roughly half
and others are much smaller.
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Cloud uptake modestly shifts the simulated HNO3 deposition, which is relevant for acid rain and nutrient
loading (Figure S1). Although absolute changes in deposition are small, the overall effect of clouds is to
increase HNO3 deposition in the middle and high latitudes by about 2%, particularly in the storm tracks,
where clouds are most prevalent. There is a compensating 2% decrease of HNO3 deposition in the marine
subtropical subsidence zones, due to the reduced HNO3 production from OH + NO2. Over the tropical con-
tinents, which have both clouds and high OH levels, the two effects compete, but the model suggests that
adding the cloud uptake increases HNO3 deposition by 1% in these regions.

Our results suggest that tropospheric NOx, O3, and OH levels are much less sensitive to heterogeneous aero-
sol chemistry than previous model studies suggested. For example, Macintyre and Evans (2010) reported
that omitting N2O5 uptake on aerosols raised tropospheric NOx by about 15% and O3 and OH by 5%, which
is 2–3 times the effect that we report (Table 1 and above). Earlier studies reported even greater sensitivity, but
subsequent studies found that their γN2O5

values on aerosol were too high (Dentener & Crutzen, 1993; Tie

et al., 2001). Part of the explanation is that we treat the product of N2O5 uptake to sea salt aerosol as
HNO3 + ClNO2, rather than 2HNO3, as in past models. That change reduces the NOx sink from aerosol het-
erogeneous reactions by 15% since sea salt accounts for one third of global N2O5 loss on aerosol in our model.
However, the major reason for our lesser sensitivity is that clouds and aerosols compete for the same, limited
supply of N2O5 and NO3, so any changes in aerosol uptake are largely offset, or buffered, by opposing
changes in cloud uptake. When aerosol uptake of NOx is removed from the model, NOx uptake on clouds
increases 60%. This competition explains why the results of neglecting both cloud and aerosol heterogeneous
reactions simultaneously are much greater than the sum of neglecting them individually (Table 1).

Although the addition of heterogeneous NOx chemistry in clouds has significant impacts on tropospheric
oxidant chemistry and budgets, discussed above, adding this chemistry has little meaningful effect on the
model's comparison to most aircraft and sonde observations of NOx and O3. This is because the 1%–3%
decreases in mean background NOx and O3 due to cloud chemistry are much smaller than the environmen-
tal variability or prior model biases for these gases (Jacob et al., 2003; Logan, 1999; Logan et al., 2012).
Examples are shown in Figure S2. The mechanism could potentially be tested further with nighttime air-
borne measurements of N2O5 and NO3 lifetimes (e.g., Brown et al., 2006, 2009) averaged over large, partly
cloudy, low‐aerosol regions. The chemistry of N2O5 uptake on water and ice is sufficiently well understood,
however, that the reaction should be included in atmospheric models regardless of its benefit or detriment to
observational comparisons. Nevertheless, this shift should slightly diminish the surface O3 bias found in
many models (Young et al., 2018) and push the model closer to the observationally constrained CH4 lifetime
(11.2 ± 1.3 year versus 8.7 year simulated; Prather et al., 2012). Considering that doubling the spatial resolu-
tion to 2° × 2.5° increases the lifetime about 0.5 year (Holmes et al., 2013), a higher‐resolution version of the
present model using the same chemistry would likely be at the lower end of the uncertainty envelope.

Recent global model studies disagree on the relative importance of processes contributing to HNO3 and
nitrate production. Most have neglected N2O5 and NO3 uptake in clouds (Alexander et al., 2009; Bauer,
2004; Hauglustaine et al., 2014; Xu & Penner, 2012), but one study suggested that this process provides
41% of HNO3 production (Williams et al., 2009). That model used the thin‐cloud approximation, however,
which significantly overestimates N2O5 uptake, as we showed in section 2, so our estimate of 5% is likely
more realistic. Heterogeneous reactions on aerosols are reported to provide 8%–41% of global HNO3 produc-
tion (Alexander et al., 2009; Bauer, 2004; Hauglustaine et al., 2014; Williams et al., 2009; Xu & Penner, 2012).
Trends and variability in aerosol surface area will change the aerosol uptake rate, and these studies exam-
ined different years, but that is unlikely to account for the large range. However, the smallest estimate
included reactions only on sulfate aerosol (Hauglustaine et al., 2014), and the largest assumed a very large
uptake coefficient (γN2O5

¼ 0:1; Xu & Penner, 2012). Neglecting those extremes, the literature suggests that

aerosol uptake is 18%–35% of HNO3 production. Our result of 27% falls in the middle of this range.
Homogeneous hydrolysis of N2O5 is neglected in many models, because its rate and importance remain
unclear (Alecu & Marshall, 2014; Atkinson et al., 2015; Brown & Stutz, 2012; Brown et al., 2009; Crowley,
Schuster, et al., 2010), but the reaction has a meaningful impact on tropospheric O3 when it is included in
box models (Emmerson & Evans, 2009). Contrary to the box model results, tests in our global model using
the upper limit rate from IUPAC (Atkinson et al., 2015) find that homogeneous hydrolysis supplies less than
2% of global HNO3 production (0.1 Tmol N/year) and changes mean tropospheric O3 and OH by under 0.5%
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each. Another global model also reported a similar upper limit on HNO3 production (<5%, 0.1 Tmol N/year;
Williams et al., 2009), implying that the homogeneous hydrolysis rate for N2O5 is likely not a major source of
uncertainty in tropospheric chemistry modeling.

5. Conclusions

While the global importance of heterogeneous NOx chemistry on aerosol surfaces has been widely recog-
nized for several decades (Dentener & Crutzen, 1993; Heikes & Thompson, 1983; Jacob, 2000), heteroge-
neous reactions in clouds have been thought to be minor or negligible. Our results, however, show that
heterogeneous NOx loss in clouds plays a significant role in the tropospheric NOx cycle and meaningfully
impacts tropospheric oxidants. Cloud uptake provides up to 25% of tropospheric NOx loss at high latitudes
and averages 5% globally. Homogeneous, gas phase hydrolysis of N2O5 is likely 2% or less of the tropospheric
NOx sink. Although aerosols take up more NOx than clouds, neglecting either cloud or aerosol heteroge-
neous reactions in an atmospheric chemistry model has similar impacts on global tropospheric chemistry:
raising the tropospheric O3 burden by about 2% and reducing the CH4 lifetime due to tropospheric OH by
2%. Moreover, accounting for NOx uptake on clouds nearly halves the sensitivity of tropospheric oxidants
to heterogeneous aerosol reactions, because both clouds and aerosols compete for the same NO3 and N2O5.

The method of entrainment‐limited uptake, which we developed here, has clear advantages over other
approaches used to simulate cloud chemistry in atmospheric chemistry models. The method better repre-
sents cloud heterogeneous rates than the widely used thin cloud or cloud partitioning approaches while add-
ing little or no computational burden to numerical chemical solvers. Future work to specify spatiotemporal
variation in the residence time of air in clouds could further improve the method. The entrainment‐limited
equations are appropriate for any prognostic atmospheric chemistry model that does not resolve individual
clouds, whether global or regional, and applicable to any reactive compound with irreversible surface or
multiphase loss. Beyond NOx cycling, which we examined here, the method may advance global modeling
and understanding of other cloud chemical reactions, including HO2 and formaldehyde uptake, photolysis,
SO2 oxidation, mercury reduction, and aerosol processing.
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